
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS 1

Auditory Perspective Taking
Eric Martinson and Derek Brock

Abstract—Effective communication with a mobile robot using
speech is a difficult problem even when you can control the audi-
tory scene. Robot self-noise or ego noise, echoes and reverberation,
and human interference are all common sources of decreased
intelligibility. Moreover, in real-world settings, these problems are
routinely aggravated by a variety of sources of background noise.
Military scenarios can be punctuated by high decibel noise from
materiel and weaponry that would easily overwhelm a robot’s
normal speaking volume. Moreover, in nonmilitary settings, fans,
computers, alarms, and transportation noise can cause enough
interference to make a traditional speech interface unusable. This
work presents and evaluates a prototype robotic interface that uses
perspective taking to estimate the effectiveness of its own speech
presentation and takes steps to improve intelligibility for human
listeners.

Index Terms—Acoustic propagation, auditory displays,
human–robot interaction, robot sensing systems.

I. INTRODUCTION

IDENTIFYING and applying human factors that promote
utility and usability are an overarching concern in the de-

sign of auditory displays [1]. The importance of this tenet
is particularly relevant for robotic platforms that are intended
to be actors in social settings. The public naturally wants to
interact with robots via means that are already familiar, and
aural communication is arguably the mode many would expect
to be the most intuitive and efficient for this purpose.

Implementing an auditory user interface for a robot calls for
complementary machine audition and auditory display systems.
These are both multifaceted functions that present a number of
challenges for roboticists and researchers with related concerns.
Audition, for instance, requires not only an effective scheme
for raw listening but also signal processing and analysis stages
that can organize and extract various kinds of information
from the auditory input. Important tasks for a robot’s listening
system include speech recognition and understanding, source
localization, and, ultimately, a range of auditory scene analysis
skills. The auditory display system, in contrast, should be
capable of presenting speech and any other sounds that are
called for by the robot’s specific application. To support aurally
based interactions with users and the environment—and thus be
useful for more than just the output of information in auditory
form—these systems must be informed by each other (as well
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as by other systems) and coordinated by an agent function
designed to implement the robot’s auditory interaction goals.

In practice, the current ability of robots to exercise flex-
ible interactive behaviors that are guided by the perception,
interpretation, and production of sound-based information lies
far behind the generally effortless skills of human beings.
The computational challenges of auditory scene analysis and
many aspects of natural language dialog are two of the key
reasons for this shortcoming. Surprisingly, though, little work
has addressed the kinds of practical situational reasoning robots
will also need for successful auditory interactions in everyday
sound-rich environments.

For example, in speech and auditory interactions with each
other, people typically take into account a number of factors
that affect how well they can be heard from their listener’s point
of view and modify their presentations accordingly. In effect,
they reason about their addressee’s auditory perspective, and in
most situations, their exercise of this skill markedly improves
communication and reduces shared interactional effort. Talkers
learn from experience that an addressee’s ability to successfully
hear speech and other sorts of sound information depends on a
range of factors—some personal and others contextual. They
form an idea of what their listener can easily hear and usually
try not to adjust their manner of speaking much beyond what
is needed to be effective. One of the most common accom-
modations that talkers make is to raise or lower their voice
in response to ambient noise or to compensate for distance or
changes in a listener’s proximity. If an ambient source of noise
becomes too loud, talkers will often enunciate their words or
move closer to their listener or pause until the noise abates and
then will sometimes repeat or rephrase what they were saying
just before they stopped.

Taken together, these observations show that the effective-
ness in sound-based interactions often involves more than just
presenting and listening, so it is not hard to imagine that people
are likely to find speech and other forms of auditory information
a poor medium for human–robot interaction if a robot is unable
to sense and compensate for routine difficulties in aural com-
munication. Listeners count on talkers to appreciate their needs
when circumstances undermine their ability to hear what is be-
ing said. Moreover, when this expectation is not met, they must
redouble their listening effort or ask talkers to speak louder and
so on. The ability to implement a comparable set of adaptive
functions, then, is arguably a practical imperative for any
auditory interface that is targeted for social interactions with
users in everyday environments and noisy operational settings.

Prompted by this insight, the authors have designed and
implemented a computational auditory-perspective-taking sys-
tem for a mobile robot. Using ray-tracing-based room acoustic
simulations, a robot estimates signal-to-noise ratio (SNR) at a
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detected listener’s location and acts to maintain intelligibility
by inferentially altering the level and/or progress of its speech
or, when necessary, offering to move to a quieter location.
In contrast to previous work on this subject [2], the auditory
perspective of the listener is described by the theory of sound
flow through a room, integrating knowledge of environmental
obstacles, sources of masking noise, and listener characteristics
into its decision-making process. In the following material, we
describe the technical details, core functions, and an evaluation
of key facets of the system’s performance. In addition, we sum-
marize the results of a recent empirical study in which changes
in the level and progress of synthetic speech predicated on the
system’s auditory-perspective-taking scheme in the presence
of noise were evaluated for their impact on measures of user
listening performance.

II. ADAPTIVE AUDITORY INTERFACE

FOR A MOBILE ROBOT

The purpose of an information kiosk, traditionally, has been
to provide information about the environment to interested
people. The types of kiosks differ dramatically. A very simple
kiosk might just relate the day’s weather conditions or list the
set of departing flights at an airport. A more advanced kiosk
could be a computerized map, where people use a mouse,
keyboard, or touch screen to read reports about different objects
on the map. At the farthest end of the spectrum, even people
could be considered as a type of mobile information kiosk
prepared to answer an arbitrary set of questions to the best of
their abilities. Within this large range, our implementation of a
robotic information kiosk fits somewhere between a stationary
computerized map and the extreme of a person. An interested
participant speaks the title of a story or object that he or she
would like to have information about, and then, the robot uses
text to speech (TTS) to read aloud the precompiled story that
matched to that title.

Effective communication with a mobile robot using speech,
however, is a difficult problem, particularly in real environ-
ments with significant ambient noise. To maintain speech
intelligibility under such dynamic noise conditions requires
auditory perspective taking. Similar to perspective taking in
spatial reasoning [3], auditory perspective taking means having
the robot use its knowledge of the environment, both a priori
and sensed, to predict what its human counterpart can hear
and effectively understand and then adjusting its spoken output
or altering its position to maximize intelligibility and ease of
use. It should be noted that this does not replace the theory of
mind research, where the mental state of the listener is modeled
to resolve misunderstandings. By modeling what is physically
possible for an observer to hear, an auditory-perspective-taking
system reacts in real time to prevent misunderstandings caused
by poor perceptual conditions.

The remainder of this section is thus organized into three
subsections. First, we outline the components that we used to
support an adaptive “information kiosk” application involving
auditory perspective taking. Next, we introduce a set of func-
tions that the robot can use to learn and reason about sound
in surrounding environment. Last, we cover the robot’s aural
adaptations and their integration into the information kiosk task.

Fig. 1. (Left) B21r robot from iRobot and (right) MDS humanoid robot.

A. Robotic Hardware

Auditory perspective taking has been implemented on two
robotic platforms: an iRobot B21r (the original prototype [2])
and a mobile dexterous social (MDS) humanoid robot with
similar sensing capabilities (Fig. 1).

1) An array of microphones for monitoring ambient noise
(B21r: overhead; MDS: on the backpack) composed of
four lavalier microphones routed to separate battery-
powered preamplifiers and, then, to an eight-channel data
acquisition board.

2) A loudspeaker to allow the robot to speak at different
volumes to its listener.

3) A vision system for tracking users. The B21r uses stere-
ovision, while the MDS uses a combination of color and
time-of-flight cameras.

4) A laser measurement system (B21r: SICK LMS200;
MDS: Hokuyo) used with continuous localization [4]
to provide reliable robot pose (position and orientation)
estimates. (Additional pose information was gathered
with external cameras when using the MDS humanoid
platform.)

A wireless microphone headset, worn by the primary user
(i.e., the listener), is utilized in both implementations to speak
to the robot. Spoken commands are processed and recognized
by Nuance’s Dragon Naturally Speaking software. Microphone
arrays can also be used for input to speech recognition systems,
e.g., [5], and ultimately, this will be a more acceptable speech
interaction solution. However, given the focus on perspective
taking in this work and the requirements of other research, our
microphone arrays are not presently targeted for this purpose.

B. Auditory Scene Modeling

Taking the perspective of a human listener first requires a
basic understanding of the auditory scene. In this section, we
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briefly cover the tools, techniques, and information that our
system integrates to determine how the intelligibility of its
spoken output can be maintained for its user.

1) Tracking Users Visually: Visual tracking is provided us-
ing two different vision systems. On the B21r, stereovision is
realized with a rotatable TRACLabs Bi-Clops that provides
dual color images from which depth information can be ex-
tracted. Combined with face detection software developed with
OpenCV [6], the camera can localize and follow a detected
person through a 180◦ arc in front of the robot. On the MDS
humanoid, a detected face initiates a track. Depth information
from the SR3100 time-of-flight camera is then utilized in
conjunction with a color histogram to determine whether the
individual is still within view of the camera [7]. Both systems
are used to indicate the presence of a human and estimate
relative distance and angle from the robot.

2) Speech Localization: Understanding the surrounding au-
ditory scene and estimating its implications for human–robot
interaction both require effective sound source localization. In
general, there are at least two types of sound sources that a robot
should be able to localize. The first type is people using speech.
Before the robot’s vision system can be used to find someone
who is speaking, its audition system needs to detect and localize
the source of the speech. Only then can the camera be oriented
correctly. Speech detection is accomplished by calculating mel-
cepstrum coefficients [8] for sampled audio and comparing the
first coefficients to an environment-dependent threshold. Given
a 10-s training period, over which the mean and maximum
MFCC0 are identified, the threshold

threshold = 0.5 ∗ (mean_mfcc0 +max_mfcc0).

Applying this threshold classifies wide spectrum sounds as
possible speech. Such samples are processed using generalized
cross-correlation (GCC) to estimate their direction of origin and
combined over time using a 1-D auditory evidence grid [9]. A
person is localized when 1–2 s of speech evidence accumulates
for a particular direction.

3) Ambient Noise Localization: People, however, are only
part of the auditory scene and not its entirety. Many common
items such as televisions, radios, and air vents are significant
stationary sources of sound that can easily raise ambient noise
levels and disrupt aural interactions by reducing the intelligibil-
ity of speech. Given enough time, a mobile robot can investigate
its operating environment and localize all fixed sources of
sound in 2- or 3-D space using the same auditory evidence grid
formulation [10] that is used for speech localization. While it
moves, the robot samples data from loud areas, analyzes these
data using GCC to estimate the direction of incoming sound,
and adds the results to a 3-D evidence grid containing estimates
from other locations. Over time, regions in the grid containing
real sound sources (versus reflections or transient noise) in-
crease in likelihood while reflections are suppressed, effectively
triangulating on active sound sources. Fig. 2 shows a completed
grid localizing three sound sources from robotic sampling.

In general, however, completing a full mapping before each
interaction begins is not a realistic assumption. Interactions
often occur too quickly, or environment circumstances could

Fig. 2. After exploring the area inside the dashed square, the robot was able
to identify the location of three low-volume air vents. Accuracy decreased with
the air vents’ distance from the area explored by the robot.

make autonomous movement impractical. The current solution
is only approximate. It assumes that the result of the last
exploration is good enough at interaction time and that no
significant changes have occurred in the aural environment. A
better solution could incorporate a history of discovered sound
sources. Sources repeatedly discovered in the same location
could be acoustically modeled. Then, when new sounds are
locally detected during an interaction, the robot could recognize
sources in its history and update its source list without having
to move around the environment.

4) Noise Volume Estimation: Finally, the combined effect
of persistent noise sources in the robot’s operating space can
be estimated for online use through acoustic ray tracing [11].
The basic idea behind ray tracing is to generate and follow a
large number of virtual rays as they travel from their origin
at a known sound source into the surrounding environment.
Each ray begins with a known power relative to the power of
the originating sound source. This power then decays with the
distance from the ray origin and each reflection until the power
of the ray falls below some minimum threshold, and the ray
is discarded. Sound volume is calculated using these rays by
placing virtual sensors in the simulation environment. Every
time a ray passes through the region of space occupied by a
sensor, the ray is added to the measured sound at that location.

In contrast to simple linear decay models of sound volume
propagation used in the original prototype [2], ray tracing
allows an adaptive system to include reverberations from walls
and other obstacles in its noise volume estimations. This in-
creased ability, however, requires a map of the environment.
Occupancy grids are a map representation that can be quickly
constructed either by hand or autonomously by the robot itself
[11]. To use these, however, some simplifying assumptions
are required.

1) Surface diffusion is assumed to be constant across the
entire environment. As the robot has no sensors for
measuring this value, 0.25 was picked as a good average
across both large and small surfaces [10].

2) Reflections (specular and diffuse) occur at the edges of
occupied grid cells. As grid cells only indicate the pres-
ence of a reflecting surface, not its orientation, deviations
in surface orientation from a major axis are directly
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Fig. 3. Two-dimensional slice of the volume estimates produced by acoustic
ray tracing for an 80-dBA sound source.

related to error in reflected ray directions. This assump-
tion has the greatest impact on phase estimation, which is
not being used to create sound volume maps.

3) All surfaces are assumed to have the same absorption
coefficient α

α = 0.161 ∗ V/(T60 ∗ S).

This value is determined empirically from the measured
room reverberation time (T60), room volume (V ), and total
surface area (S) [12]. S and V are estimated directly from the
occupancy grid.

For a typical application of acoustic ray tracing, one or
more virtual sensors would be created within the bounds of
the described obstacle map. A robotic system, however, needs
a map to identify regions and plan movement through the
environment. To generate a map of sound volume, sensors are
selected such that there exists one sensor for every grid cell
in the occupancy grid. Sensors are modeled as cubic volumes.
These sensors then store and record the set of all rays generated
by the source or reflections off obstacles that pass through them.
In this work, we used different numbers of rays for different
situations. Prior to an interaction, the robot can model known
sound sources with 200 000 rays. During an interaction, how-
ever, newly discovered sources are modeled with only 50 000
rays to speed up the modeling process. Fig. 3 shows an example
noise map created through acoustic ray tracing.

C. Implementation of Aural Adaptations

Our implementation of an adaptive information kiosk focuses
on maintaining the intelligibility of the application’s TTS out-
put. When a user indicates that he or she wants to use the kiosk,
the robot effectively takes the listener’s auditory perspective
by determining what should be intelligible to someone at the
detected location and then executes steps to ensure that its
synthetic speech can be easily understood.

Fig. 4. Sequence of steps that the robot takes while reading a story to a human
listener. Starting with the step in the center, the robot samples the auditory
scene, estimates the current SNR, adapts its auditory output, reads a sentence,
and repeats.

The system resources outlined in the previous section allow
the robot to implement four basic courses of action to maintain
the intelligibility of its speech output and mitigate aural prob-
lems that the dynamics of ordinary auditory settings can pose
for listeners: 1) The robot can face the listener; 2) the robot can
modulate its speaking volume; 3) the robot can pause or stop
in the midst of speaking; and 4) the robot can move to quieter
location. The latter three of these actions are coordinated via
a finite-state automaton, which is shown in Fig. 4. Orienting
to face the listener relies on the vision system after the initial
determination of his or her position, so this process is run in
parallel with the other actions.

1) Facing the Listener: Loudspeakers are directional
sources of sound. They are loudest to the front and fade to the
sides in a cardioid pattern. As the properties of loudspeakers
are known a priori, a perspective-taking interface could include
directivity when modeling speech output and change volume
levels as listeners change the angle of their position relative to
the robot’s orientation. A simpler human-inspired approach,
however, is to continuously reorient the loudspeaker to face
the listener. This has two advantages. It simplifies modeling by
approximating sources as omnidirectional, and it allows visual
(B21r) or gestural (MDS) communications to be presented
more effectively.

Rotating to face the listener requires a combination of speech
localization and visual tracking. Since the kiosk can be ap-
proached from any direction, the robot waits for a potential
kiosk user to say something and then uses its speech detec-
tion and localization tools to determine which way it should
face. Thereafter, visual tracking takes over. The kiosk reorients
whenever the user moves more than 30◦ to the left or right.

2) Modulating Its Speaking Volume: The information kiosk
is designed to relay textual information to an interested in-
dividual. In a noisy environment, people naturally adjust not
just the volume but also the properties of their vocal tract
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to accommodate the ambient conditions [13]. Unfortunately,
computer-synthesized speech has not yet reached that level of
naturalness [14]. Our robotic adaptations, therefore, are focused
on volume adjustments relative to ambient noise conditions.

Once a user has selected a topic, recognized as a verbal
command by a commercial speech recognition engine, the
robot estimates the user’s listening requirements and reads
corresponding text aloud at a speaking volume that balances
intelligibility and social norms. Between each sentence, the
system reassesses its volume on the basis of estimated ambient
noise at the detected listener’s physical location. Noise levels
are determined by detecting changes to ambient volume with
the robot microphone array and adding an offset to modeled
active source sound levels. As a result, the kiosk uses different
volumes for different locations in the room, raises its voice in
response to new ambient noise, and/or the listener steps back
and speaks more quietly when ambient noise abates and/or the
user moves closer.

3) Pausing for Interruptions: Some environments are occa-
sionally subject to unreasonably loud noise events. In military
settings, for example, users of speech interfaces can period-
ically expect to encounter overwhelming levels of noise due
to aircraft, vehicles involved in logistical operations, and even
weapon fire. Excessively loud sounds also occur on city streets
and in various kinds of public spaces. In these circumstances,
speech can become unintelligible, and people usually stop
speaking and wait until the sound passes. In anticipation of
applications where this situation can easily arise, the kiosk
uses its perspective-taking system to determine when the level
ambient noise is likely to overwhelm the listener’s ability to
hear what it is saying and will pause if necessary until the
intervening sound has subsided. When the kiosk resumes, it
begins with the phrase, “As I was saying. . .”

When the kiosk is speaking, it will also pause to accom-
modate the listener’s or another person’s speech—in fact, it
brings its presentation to a full stop. Unlike noise and other
kinds of auditory events, secondary speech that arises in the
midst of speaking that is already in progress does not nec-
essarily impact the latter’s intelligibility; it may, however, be
intended to interrupt and draw the listener’s attention elsewhere.
As the kiosk is unable to determine the meaning or intent
of such speech, it relies on proximity to determine whether
an interruption is in order. The perceptual system for speech
detection and localization (Section II-B2) uses an environment-
dependent threshold to separate speech from background noise.
To be identified as interrupting speech, a talker must either be
nearby or substantially louder than normal. When this occurs,
the kiosk stops speaking until it regains its audience under the
assumption that its presentation is no longer the focus of its
listener’s attention. This action functions as a simplified form of
social decorum in which the robot is regarded not as a peer but
as an appliance. In particular, the auditory-perspective-taking
scheme has no computational facility for theory of mind func-
tions such as inferring user intentions and perceptual abilities.
Consequently, since it cannot infer when its listener’s attention
has returned on the basis of the kind of visual or indirect speech-
based (semantic) evidence that people ordinarily exhibit with
each other, the robot uses its screen (B21r) or raises an eyebrow

(MDS) to indicate that it has been interrupted and is waiting
for a new command. When the user is ready, he or she can
choose from a set of commands, including “Continue where
you stopped,” “Repeat from the beginning,” “Repeat the last
line,” and “Change to a new subject.” These phrases allow users
to control the contents of the TTS output depending on how
much they remember from before the interruption.

4) Relocating the Robot: The final action in response to a
noisy auditory scene is to move someplace else to reduce the
masking effect of persistent noise on the intelligibility of the
kiosk’s speech. For instance, if it is located next to a loud air
vent when the ventilation system starts up, it does not have to
stay there. If this situation occurs, when the robot is not engaged
with a user, it is free to move autonomously. Otherwise, it first
asks its listener if he or she would like to relocate.

To determine where to relocate, our system estimates noise
volumes across the entire region of reachable space. When
a new source of ambient noise is detected and localized, its
effects on the auditory scene are estimated using ray tracing,
and the results are added to the robot’s internal noise map.
This then allows the robot to identify relative volume levels
throughout the environment and identify a suitable alternative
location within acceptable ambient noise levels for both the
human and robot participants.

D. Interface Discussion

In general, our adaptive auditory interface for a mobile
information kiosk integrates a wide range of robotic capabilities
to enhance speech intelligibility. It models the auditory scene
and its effects on a listener, taking the human’s perspective
by integrating prior work in sound source localization and
visual detection/tracking of humans into acoustic models of
the surrounding environment (Section II-B4). Then, when the
modeled human perspective suggests interference, the robot can
act to maintain intelligibility—rotating to keep the listener in
front of the loudspeaker, changing the volume of its speech
output, pausing for interruptions, or offering to relocate the
conversation to somewhere with a higher SNR. Altogether, this
diverse skill set allows a robot to respond to a dynamic auditory
scene in a way that, as will be demonstrated, is both effective
and expected by a human partner.

III. ROBOTIC PERCEPTION EVALUATION

The application of perspective-taking skills to a working
robotic system has followed the general goals of continuous
adaptation to promote intelligibility and ease of use, thereby
improving overall knowledge transfer between the robot and
the human listener. These adaptations are dependent upon
reliable robotic perception. Facing the listener (and pausing
for interruptions) requires first recognizing speech in noisy
environments. Adequately raising speech volume depends upon
accurately factoring environmental noise into models of the au-
ditory scene in order to predict intelligibility. Finally, relocating
the robot to a quieter place requires accurate sound volume
maps. In this section, we focus on evaluating the information
kiosk’s perceptual capabilities, specifically speech detection
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TABLE I
EXPERIMENTAL RESULTS OF SPEECH DETECTION AND SOUND SOURCE LOCALIZATION

and localization, the accuracy of acoustic ray-tracing estimates,
and the effectiveness of relocating the robot. Together with a
human study examining the effectiveness of adjusting speech
volume and pausing between sentences (Section V), these
experimental results demonstrate the advantage of an auditory-
perspective-taking system.

The perceptual capabilities of the information kiosk were
evaluated using recordings made in a working machine shop on
the Naval Research Laboratory. The machine shop environment
was selected for both its potential future applicability and its
similarity to other scenes involving Navy hardware. Jet engines,
trucks, and other mechanical systems can generate significant
volumes of noise that people must be able to communicate
around.

A. Speech Detection and Localization

Speech detection among ambient noise is a critical
component of an auditory-perspective-taking system. Aside
from maintaining the maximal efficiency of loudspeakers
(Section II-C1), detecting and rotating to face speech let
the robot track an individual interacting with the system
(Section II-B1) and build models of what someone at their
location would be hearing (e.g., their auditory perspective).
Speech detection also assists when pausing for interruptions
(Section II-C3). When people talk nearby or loudly, it is disrup-
tive, and the system should pause for the interruption to pass.

To evaluate speech detection and localization, the robot was
exposed to three different auditory scenes created from the
machine shop recordings: 1) no active sound sources (52 dB
ambient); 2) an electric seamer at moderate distance (63–65 dB
ambient); and 3) a nearby machine rattle noise (67 dB ambient).
In each environment, the robot was given 10 s to learn the
ambient noise characteristics. Then, a loudspeaker was used
to play a 5-s speech utterance in: 1) 1-m increments along a
line away from the robot to determine the maximum distance
at which speech could still be detected and 2) 20◦ increments
at 2 m from the robot to estimate localization accuracy for the
detected speech. The results of these tests are shown in Table I.

As expected for a threshold-based system, the radius around
the robot in which speech is detectable shrinks with the volume
of masking noise in the environment. This is the desired effect
for determining the disruptiveness of speech in the environ-
ment. In louder environments, speech must be significantly
closer in order to be equally disruptive. Localization accuracy
also decreases with higher ambient noise levels but remains
high enough under all noise conditions to correctly orient visual
tracking systems that have 30◦ field of view.

B. Volume Estimation Accuracy

Using ray tracing for sound volume estimation has been
tested previously in the literature [10] and even migrated to pro-
fessional acoustical engineering tools [15]. This work does not

need to revalidate the algorithm. However, the use of occupancy
grids to facilitate robotic collection of environmental maps
does introduce additional error into the estimation process. In
this section, we demonstrate that, even with this additional
error, ray tracing shows significant estimation improvement
over spherical spreading from an ideal source [12]. For the
following tests, acoustic ray tracing uses hand-created obstacle
maps of the environment. These maps include walls and other
large furniture but leave out smaller objects. The spherical
spreading method, used in previous robot mapping work to
estimate volume decay [11], ignores the effects of individual
obstacles. It assumes that sound pressure decays inversely with
distance from the sound source and treats reverberation as
constant over the entire room.

The effectiveness of sound volume predictions was evaluated
using a loudspeaker, a camera, and a hand-moved microphone
in two different-size rooms, i.e., a 3× 5 m2 office and an 8×
10 m2 laboratory. For each microphone position, the stationary
loudspeaker played a short sound pulse. The microphone then
recorded the SNR between the recorded impulse and the back-
ground noise. A visual marker of known size located under the
microphone was tracked by the camera to measure the distance
from the sound source.

Fig. 5 compares the measured results to the SNR predicted
by each method. The two graphs show the difference between
the different environments. In the small office, reverberation is
more significant. As expected, acoustic ray tracing more closely
follows the measured SNR than the ideal source model which
ignores reverberant effects. Also, because of the dominance of
reverberation in the small environment, it is clear that absorp-
tion was overestimated in this case as the measured values are
all greater than the estimated ones. In the larger environment,
we see a closer match between measured and estimated values.
Ray tracing still outperforms the ideal source model but only
at greater distances from the source. In general, incorporating
the effects of obstacles into sound propagation, even if using a
coarse representation of objects like an evidence grid, is a better
alternative to the constant reverberation approximation.

C. Relocation Effectiveness

Unlike adjusting the robot’s speech output, repositioning the
robot has an objective measurable goal, specifically, to reduce
the level of detectable masking noise. Therefore, we evaluated
the effectiveness of this action by allowing the robot to move
itself from an initially noisy location to a quieter location and
then measuring the difference in noise levels. The auditory
scene, shown in Fig. 6, uses three recorded sounds from the
machine shop (lathe, electric seamer, and a rattle noise from a
loose part in one machine) and a recording of human speech to
create a dynamic environment in which a robot might operate.
All of these sources represent ambient noise that might inter-
fere, but no more than three sources were active at any time.
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Fig. 5. SNR estimate versus measured graph for (top) an office environment,
and (bottom) a larger laboratory environment.

Fig. 6. Map of the room illustrating differences between movement strategies
when relocating the robot. When two sources are active (seamer and speech),
the informed path leads to a 7-dB improvement.

The noise reduction strategies evaluated were as follows:
1) Identify the farthest distance from the source, and relocate,
and 2) add the source effects to an acoustic noise map, and
identify the quietest location. The robot began in a quiet section
of the scene that is interrupted by a “new” nearby source of
noise. When ambient noise levels recorded by the robot exceed
60 dBA, it seeks a new improved location. For both noise
avoidance strategies, the robot identifies the direction to the
new sound source and assumes that the sound source is 1 m
away in the detected direction. The new source’s volume is
calculated from the detected change in ambient volume level.
The farthest distance strategy then uses that position to identify

TABLE II
COMPARATIVE IMPROVEMENT IN AMBIENT NOISE LEVEL

IN A-WEIGHTED DECIBELS OBSERVED BY ROBOT AND

HUMAN USER AFTER “FARTHEST DISTANCE” AND

“INFORMED AVOIDANCE” RELOCATION STRATEGIES

the region of clear space in the obstacle map that is farthest
away from the new source. The informed avoidance strategy
uses acoustic ray tracing to estimate the effects of the new
sound source on the environment and adds to the noise map
created for other known sources. It then moves to the quietest
reachable location in the map.

A total of 18 trials was completed using each noise reduction
strategy: four trials with only one active source, 12 trials with
two active sources, and two trials with three active sources.
Table II summarizes the improvement in ambient noise levels
due to each relocation strategy. Columns marked with “Robot”
indicate the difference in noise levels between robot positions,
while the human column indicates noise differences at a posi-
tion 1 m from the front of the robot. Results per source are the
mean improvement across all trials in which that source was
turned on near the robot to raise sound levels above 60 dBA. A
negative number indicates an increase in ambient noise levels.

In all but three trials, an informed approach to relocating the
robot outperformed the farthest distance relocation, averaging
a 3-dB improvement for the robot and 2.5 dB for the human.
Of those three trials, the greatest difference between relocation
strategies was only 2 dB for either human or robot locations,
and two of those trials had a difference of < 1 dB. The
difference between the two strategies is best shown, however,
not by the average but by the worst case situations. In the
worst case relocation, simply moving away from the target
meant a negative performance improvement. When activating
the relatively quiet lathe noise in the presence of other sources,
the simple approach placed the robot next to other louder sound
sources twice and, in the best case, improved the robot’s noise
levels by only 5 dB. Using an informed approach, however, the
robot never ended up next to another sound source. It improved
the ambient noise levels of both the human and the robot in
all trials. Even when relocating with only one active source in
the environment, meaning that moving farther away could not
make the auditory scene worse, incorporating an obstacle map
into the sound propagation estimates meant a 1.5-dB average
improvement for both the human and the robot.

D. Perception Evaluation Discussion

This section empirically evaluated robotic perception
in support of auditory perspective taking. It examined
three system components: speech detection and localization,
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ray-tracing-based volume estimation, and relocating the robot
in response to poor SNR. The first component, i.e., speech
detection and localization, was examined under three different
noise conditions. While increased noise levels did adversely
affect performance, it decayed as theoretically desired, reducing
the range at which speech would interrupt an interaction.

Second, ray-tracing-based estimates for sound volume were
compared to hand-collected information about the auditory
scene. Volume estimates closely followed real measurements
in two different environments. Importantly, this component de-
pends only on data that can be autonomously collected, leaving
room for a fully robotic investigation of any environment in
which the interface is being deployed.

Finally, having these estimation capabilities enables a
smarter relocation strategy as part of perspective taking.
Equipped with a noise volume map, the robot outperforms pure
avoidance-based strategies for improving ambient noise levels.
These ray-tracing generated maps correctly indicated quieter
regions with better SNR, and the robot could relocate effec-
tively. Given an accurate map, alternative map-based strategies
in the future could focus on closer but quiet enough positions
in which to continue the interaction. The same map could
identify regions in which the expected SNR is high enough but
which are not too far out of the way. In general, estimating
noise throughout the environment is an important auditory-
perspective-taking ability, informing the robot of its human
partner’s acoustic circumstances and of expected performance
elsewhere.

IV. ADAPTIVE INTERFACE STUDY

An empirical usability study was also carried out to evalu-
ate the merit of the auditory-perspective-taking scheme’s key
functions, specifically its ability to make changes in the level
and progress of the presented speech (originally reported in
[16]). Usability was construed in terms of the impact of these
adaptive behaviors on listening performance. To ensure that the
experimental setting was the same for all participants, the audi-
tory materials and adaptive actions in the study’s manipulations
were simulated in a controlled studio environment where re-
sponse tasks could be executed while seated. Similarly, a small
number of different types of broadband noise were employed
as acoustic maskers, as opposed to a less generalizable set
of real-world noise environments (e.g., urban traffic, factory
floor, busy building lobby, stadium crowd, etc.). The speaking
materials used in the study were developed from a corpus of
public radio commentaries and converted to “robot” speech
with a commercial TTS engine [17]. To avoid making the use
of different voices, an additional experimental factor (see, e.g.,
[18] and [19]), a single “standard” synthetic male voice, was
used throughout.

A. Study Methods

Five female and nine male listeners, all claiming to have
normal hearing, volunteered for the study, which employed
a within-subject design. The timing and presentation of all
sounds and response materials were coordinated by software
coded in Java. The auditory materials (synthetic speech and

episodes of masking noise) were rendered with three powered
studio loudspeakers placed directly left, right, and in front of
the listener, at a distance of approximately 1.32 m. The response
tasks were visually displayed on a 0.61-m (diagonal) flat-panel
screen, and all sound was limited to a maximum of 85-dB sound
pressure level.

1) Listening Materials and Experimental Manipulations:
The speech materials, which are ten short commentaries on
topics of general interest, were equated for length and randomly
assigned to three training sessions and to seven formal listening
exercises making up the main body of the experiment. The com-
mentaries for the training sessions were each further reduced
to about a minute of continuous speech, and these materials
were used to allow participants to become familiar with the
listening and response tasks. The main exercises lasted between
2.5 and 3.5 min, depending on the particular manipulation (see
hereinafter), and a check of these commentaries for uniformity
showed no significant differences across a number of lexical
parameters (number of sentences, words, and syllables, etc.).

Since most real-world noise environments have variable
characteristics that make their effectiveness as maskers difficult
to systematically control, the study employed broadband noise
to simulate different types of speech-masking events. System-
atic episodes of brown noise were used as maskers in two of
the training sessions. In each of the main exercises (except the
Baseline condition), speech was masked either by pink noise,
white noise, or “Fastl” noise (white noise modified to simu-
late the average spectral distribution and fluctuating temporal
envelope of speech [20]). Four kinds of masking events—two
“short” (5 s) and two “long” (30 s)—were defined. These pairs
each included a “quiet” (−26 dB) event and a “loud” (−19 dB)
event, with linear onset and offset ramps lasting 0.51 s for short
episodes and 7.56 s for long ones. Only one type of broadband
noise was used in each of the main exercises with masking
events, with each of the four kinds of events occurring twice
in random order.

a) Design: The study combined a Baseline listening ex-
ercise with a two factor, 2 × 3 repeated-measure design,
presented in counterbalanced order. The first factor (two levels)
manipulated the use and nonuse of the system’s adaptive speech
behaviors in the presence of noise, and the second factor (three
levels) examined the use of pink, white, or Fastl noise. In the
Baseline condition, participants simply listened to one of the
commentaries and carried out the associated response tasks.
In the other six conditions, they performed functionally equiv-
alent listening and response tasks with the addition of eight
intermittent noise events. All spoken material was rendered by
the loudspeaker in front of the listener, and noise events were
rendered by the loudspeakers on the listener’s left and right.
Coded designations (which are used in the remainder of this
paper) and a summary of the seven listening exercises in the
main part of the experiment are given in Table III.

b) Planned comparisons: The study’s seven conditions
were motivated by a set of anticipated outcomes. Baseline
measures of listening performance were expected to be best in
the study but not optimal due to the use of synthetic speech.
The listening performance in the Nonadaptive conditions
(NA-white, NA-pink, and NA-Fastl) was expected to be the
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TABLE III
SUMMARY OF THE SEVEN EXPERIMENTAL CONDITIONS AND

THEIR CODED DESIGNATIONS. PARTICIPANTS HEARD ALL

SEVEN CONDITIONS IN COUNTERBALANCED ORDER

lowest. The performance in the Adaptive auditory display
conditions (A-white, A-pink, and A-Fastl) was expected to be
nearly as good as the Baseline and substantially better than in
the Nonadaptive conditions. It was unclear how the broadband
noise manipulations would affect performance, however, be-
cause the auditory-perspective-taking system only takes relative
loudness into account and makes no distinction between noise
types. Each class of noise in the study differs in key ways
from the other but should all be good maskers of speech.
Accordingly, planned contrasts are used in the following to
explore how the performance in the two presentation strategy
manipulations differs from the performance in the Baseline
condition across the three types of noise.

c) Adaptive auditory display behaviors: To emulate what
the auditory-perspective-taking system does to ensure that its
speech can be heard by its listener, the commentaries in the
Adaptive auditory display conditions—A-white, A-pink, and
A-Fastl—were modified as follows. Each was aligned with the
eight randomly ordered noise events in its manipulation, and its
amplitude envelope was modulated appropriately to compete in
parallel with the maskers. The resulting envelope modifications
were then shifted in time to simulate the delay that it takes
for the onset of a noise event to cross the system’s response
threshold—3.0 and 1.0 s for long and short “quiet” events, and
2.0 and 0.8 s for long and short “loud” events, respectively (the
latter with correspondingly steeper onset ramps). Next, periods
of silence corresponding to the system’s pause response for
loud maskers were inserted, thus lengthening the commentary’s
running time. During short episodes of loud noise, pauses were
placed at the first word boundary following 1.2 s of the loudness
response and, during long episodes, at or just beyond the
5.0-s mark. The commentaries were resumed, where each loud
noise event drops below the pause threshold by reuttering the
interrupted sentence or phrase or, in the case of long pauses,
resuming first with the words, “As I was saying. . .” The idea
of resuming interrupted synthetic speech in this latter manner
arose during the development of the prototype and was found to
be consistent with listeners’ intuitions about long verbal pauses
in piloting for the study. A schematic of the auditory display’s
four adaptive behaviors showing level changes and pauses is

Fig. 7. Schematic diagrams showing actions taken by the auditory display in
the experiment’s Adaptive conditions to counter noise events with the potential
to mask speech from the listener’s perspective: (a) Long–loud, (b) long–quiet,
(c) short–loud, and d) short–quiet. Time in seconds is shown on the horizontal
axis (note differences in scale for long and short events), and level in decibels is
shown on the vertical axis. Noise event envelopes are shown as gray trapezoids.
Envelopes of continuous speech are shown in green. See the text for additional
details.

given in Fig. 7. (Edited examples of the sound materials used in
the study are available from the authors.)

2) Response Tasks and Dependent Measures: Participants
were asked to carry out two response tasks: one while listening
and the other immediately after. They were also asked to rate
their preference for the way the synthetic speech was presented
after each exercise on a seven-point scale.

The response task while listening involved monitoring for
noun phrases in the spoken material and marking them off
in an onscreen list that contained both the targeted phrases
and an equal number of foils from commentaries on similar
but not identical topics. Targets were listed in the order that
they occurred and were randomly interleaved with no more
than three intervening foils. Listeners rarely mistook foils for
utterances in any of the commentaries, regardless of their ability
to verify targets, and because of the extremely low incidence of
false alarms (a total of 4 out of 1960 possible correct rejections),
performance in this task was measured only as the percentage
correctly identified target noun phrases. In the results and
discussion sections, this measure is referred to as p(targets).

In the after-listening response task, participants were given a
series of sentences to read and were asked to indicate whether
each contained “old” or “new” information based on what
they had just heard [21]. “Old” sentences were either orig-
inal word-for-word transcriptions or semantically equivalent
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TABLE IV
EXAMPLE OF EACH OF THE FOUR TYPES OF SENTENCES; PARTICIPANTS

WERE ASKED TO JUDGE AS “OLD” OR “NEW” IMMEDIATELY AFTER

EACH LISTENING EXERCISE. LISTENERS WERE ALSO ALLOWED TO

DEMUR BY SELECTING “I DO NOT KNOW” AS A RESPONSE

paraphrases of commentary sentences. “New” sentences were
either “18istracters”—topic-related sentences asserting novel
or bogus information—or commentary sentences changed to
make their meaning inconsistent with the content of the spoken
material. An example of each sentence type developed from a
commentary on the ubiquitous popularity of baseball caps is
provided in Table IV. In addition to responding “old” or “new,”
participants could also demur (object to either designation) by
responding, “I do not know.” Eight sentences (two of each of
the old and new sentence types) were presented after each of
the main listening exercises. Two measures from this response
task in each condition are reported as follows: p(sentences) is
the proportion of sentences correctly judged as old or new, and
p(demurs) is the proportion of “I do not know” responses.

B. Study Results

The performance measures for both response tasks were
mostly consistent with the anticipated pattern of listen-
ing performance. Listeners’ abilities to recognize targeted
noun phrases p(targets) and judge sentences as old or new
p(sentences) were both highest in the Baseline condition and
lowest in the Nonadaptive (NA) conditions. Moreover, scores
for the target phrase task were only slightly lower than Baseline
in the three Adaptive (A) conditions, as predicted. Scores for the
sentence task in the Adaptive conditions, though, were not as
high as predicted. However, the correlation between p(targets)
and p(sentences) is significant [Pearson’s r = 0.573, p = 0.05
(two-tailed)]. Plots of the mean proportions of correctly iden-
tified target noun phrases p(targets) and sentences correctly
judged as “old” or “new” p(sentences) in all seven conditions
are shown in Fig. 8(a) and (b), respectively.

To determine the respective effects of presentation strategy
and noise type, a two-by-three repeated-measure analysis of
variance (ANOVA) for each of the dependent performance
measures was performed on the manipulations involving noise
events. Listeners were significantly better at the target and
sentence tasks in the Adaptive presentation conditions (versus
the Nonadaptive conditions)—respectively, F (1, 13) = 190.7,
p < 0.001 and F (1, 13) = 5.077, p = 0.042—but there was no
main effect for noise type. A significant interaction between
the two factors was also found in the analysis for p(targets)
(F (2, 12) = 8.306, p = 0.005).

Fig. 8. (a) Plot of the mean proportion of correctly identified target noun
phrases p(targets) in each condition. (b) Plot of the mean proportion of
sentences correctly judged as “old” or “new” p(sentences) in each condition.
The y-axis in both plots shows proportion. The error bars show the standard
error of the mean.

TABLE V
F STATISTICS FOR THE PLANNED CONTRASTS BETWEEN THE BASELINE

AND ADAPTIVE CONDITIONS FOR THE p(targets) AND p(sentences)
PERFORMANCE MEASURES. STATISTICS SHOWING THAT A LOWER

PERFORMANCE MEASURE IN A PARTICULAR CONDITION IS

SIGNIFICANTLY DIFFERENT FROM THE CORRESPONDING

MEASURE IN THE BASELINE CONDITION ARE

INDICATED WITH AN ASTERISK

Planned contrasts with performance in the Baseline condition
were also used to evaluate how each type of noise impacted
the dependent measures. As expected, all types of noise were
significant maskers of speech in the respective nonadaptive ma-
nipulations. More interestingly, this was also the case in some
of the Adaptive conditions, meaning that, while the Adaptive
presentation strategy helped listeners hear significantly better
than they could in the nonadaptive manipulations, it was not
quite as good as listening in the absence of noise. In partic-
ular, Fastl noise impacted both performance measures in the
Adaptive manipulations, and white noise impacted p(targets).
Table V summarizes the results of the planned comparisons in
the Adaptive conditions.
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Fig. 9. (a) Plot of the mean proportion of “I do not know” responses
p(demurs) (the gray columns correspond to the y-axis on the left) in the
sentence judgment task and the number of participants in each condition
choosing to demur one or more times (the squares correspond to the y-axis
on the right). (b) Plot shows the mean level of participants’ agreement with the
statement “I prefer the way the synthetic speech was presented in this listening
exercise” in each condition. The y-axis in this plot reflects a seven-point Likert
scale ranging from 1 = “strongly disagree" to 7 = “strongly agree." The error
bars in both plots show the standard error of the mean.

An ANOVA of the six non-Baseline conditions and
planned contrasts with the Baseline were also performed for
p(demurs)—the proportion of “I do not know” responses that
participants made in each condition—and a plot of this mea-
sure in each of the seven conditions is shown in Fig. 9(a)
(respective counts of listeners who demurred one or more times
are also shown). The trends in these data are consistent with
the anticipated results, but no main effects were found in the
two-by-three analysis; moreover, only the contrast between the
NA-Fastl and Baseline conditions was significant. Finally,
the mean subjective preference for the way that the synthetic
speech was presented in each exercise is plotted in Fig. 9(b).
As mentioned earlier, a seven-point scale was used, and inter-
estingly, preference for the Adaptive presentations was slightly
greater than preference for the Baseline condition. Planned con-
trasts with the Baseline were not significant, but an ANOVA of
the non-Baseline manipulations showed a significant preference
for the Adaptive presentation strategy (F (1, 13) = 10.538,
p = 0.006).

C. Study Discussion

Collectively, the results of the study provide significant em-
pirical evidence of the utility of simulated auditory perspective
taking, represented here by the inferred use of loudness and/or
pauses to overcome the potential of noise to mask synthetic
speech. In particular, while measures of listening performance
aided by the adaptive techniques in the presence of noise
were not as robust as listening in the absence of noise, they
were markedly better than unaided listening in the presence of

noise. In addition, when asked, listeners indicated a significant
subjective preference for the adaptive style of synthetic speech
over the nonadaptive style.

This outcome has several important implications for the
design of auditory interfaces for robots and, more generally,
for Adaptive auditory display research. First, it is worth noting
that the performance in the noise-free Baseline condition—
p(targets) = 0.88, p(sentences) = 0.80—was poorer than
might be expected and is likely a consequence of the use
of a synthetic voice. Brock et al. observed better scores
(p(targets) = 0.91, p(sentences) = 0.87) for unmanipulated
individual human speech in a separate, but somewhat similar,
experiment with a longer listening task [22], and even larger
performance differences have been found in other studies with
other paradigms, e.g., [18] and [19]. This performance disparity
and the fact that there are no alternatives to synthetic speech
for conversational purposes in robotic systems are further
motivation for accommodating users’ listening requirements
in noisy settings. Second, the different impacts of each type
of noise used in the study suggest that additional techniques
may be needed to effectively accommodate the user’s auditory
perspective in certain kinds of environments. While pink, or
more broadly, “1/f” noise, which occurs widely in nature, was
the most successfully adapted for in the study, white and par-
ticularly Fastl noise events clearly hampered listening in spite
of the system’s adaptive strategies. The pronounced impact of
Fastl noise, particularly with its speechlike properties, suggests
that machine categorization of the type of ambient noise present
in an auditory could be used to augment the adaptive tech-
niques explored here. Third, in light of the listeners’ significant
subjective preference for the way that synthetic speech was
presented in the study’s Adaptive manipulations, it is essential
to underscore that each of the ways that the robot’s auditory
display is designed to respond to noise onsets is modeled on
a human solution. Participants in conversation generally try
to be aware of, and act on, their addressees’ listening needs
transparently and in ways that meet each other’s expectations.
Thus, simulating this type of perspective taking in auditory
interaction design for robotic systems, as well as others, has
important collaborative utility and merits further development.
Fourth, the performance improvements associated with speak-
ing louder to overcome low levels of masking noise suggest
that the same type of adaptation will successfully extend to
situations in which the proximity between the robot and its user
is likely to vary with any frequency. This capability has already
been implemented but has not been formally tested.

V. CONCLUSION

The notion that robots will eventually assume collaborative
roles involving aural interactions in social settings has already
materialized in the form of self-serve checkout registers at
stores, automated telephone support, and toys that talk and
respond to voice commands. In the relatively near future,
it is widely expected that mobile robotic platforms capable
of far greater autonomy than is technically feasible today
will be deployed for a wealth of interactive societal purposes
ranging from service and caretaking to military and logistical
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applications. Soon, people will not only expect to be able to in-
teract with robots in much the same way they interact with each
other in face-to-face activities but they will also expect these
advanced systems to understand their communicative needs.
The idea of auditory perspective taking—inferring what an
addressee’s listening requirements are on the basis of ambient
sound, proximity, and, ultimately, social constraints—is just
one element of this understanding, albeit an important one, that
will eventually be joined with other communication skills that
users will expect robots and other systems to be capable of,
such as gaze following, contextual awareness, and implied goal
recognition.

With these insights in mind, this paper has presented a
prototype computational auditory-perspective-taking scheme
for a mobile robot. It monitors the auditory scene through
multimodal sensing, tracking human user positions, listening
for speech, and localizing noise sources to estimate the intelli-
gibility of its own auditory presentation. As necessary, the robot
can then use that knowledge to alter the level and/or progress
of its speech or move to a quieter location to accommodate its
user’s listening needs.

Evaluation of our perspective-taking interface has focused
on three different core abilities: speech detection and localiza-
tion, estimating noise volume, and modifying speech output
in response to external stimuli. Section III demonstrated the
accuracy of the first two, correctly identifying speech and its
incident angles acoustically under differing noise conditions,
building maps of the environment, and using those maps to
relocate the robot to areas with lower ambient noise. Hand-
collected measurements verified the substantial improvement,
even over alternative relocation strategies. Section IV then
demonstrated in a human study the importance of adapting a
speech interface to external noise, through volume adjustments
and effective pausing. When noise levels were moderate, and
did not require relocation, users both preferred an adaptive
interface and showed enhanced listening performance to a
nonadaptive speech presentation.

In conclusion, the success of the Adaptive auditory display
strategies evaluated confirms the importance of this emerging
direction in user interface design, and the developed prototype
demonstrates the wide range of skills available to a perspective-
taking robotic interface. Future auditory-perspective-taking
research, however, has significant room for growth. In partic-
ular, adaptive behavior by a perspective-taking system should
incorporate knowledge or inference of users’ privacy con-
cerns and other socially motivated considerations. Also, enun-
ciation and, more ambitiously, conversational repair can be
explored as techniques for countering informational mask-
ing. Finally, there is a range of nonspeech applications for
robot auditory interfaces, such as aural monitoring and play-
back and sonification of process or sensor data that are even
more challenging than speech displays to use in the presence
of ambient noise. Nevertheless, while adaptive presentation
strategies for nonspeech sound information in noisy settings
will likely require approaches that are somewhat different
from the techniques evaluated here, it remains important to
keep the listener’s perspective in mind when developing an
auditory display.
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